Calculating Sinuosity

These calculations refer to 1 field method - Slope & Bearing

GIVEN:

UpstreamTransect (i.e. A1,A2,A3,A4....K0) SegmentLength (distance between sighter and sightee; (DT on spreadsheet) Bearing (degrees)

- 1. For each UpStreamTransect, associate a SegmentLength and Bearing.
- 2. Convert units on Bearing from degrees to radians; call it theta (θ).
- 3. Calculate Northing vector for each UpstreamTransect. This is [SegmentLength x ($Cos\theta$)]
- 4. Calculate Easting vector for each Upstream Transect. This is [SegmentLength x (Sin θ)].
- 5. Calculate CrowFlyDistance This takes 3 steps
 - a. Sum all Northing vectors, then square the sum.
 - b. Sum all Easting vectors, then square the sum.
 - c. Square root of (result from a + result from b)
- 6. Calculate the MeanderDistance. This is the sum of all SegmentLengths

REPORT:

Sinuosity = MeanderDistance/CrowFlyDistance

Metric	SourceFile	Operation
Sinuosity	SlopeAndBearing	Divide field-measured meander length of
		the site by the straight distance between
		top and bottom (determined with
		trigonometry).