Calculating Sinuosity

These calculations refer to 1 field method - Slope \& Bearing
GIVEN:
UpstreamTransect (i.e. A1,A2,A3,A4....K0)
SegmentLength (distance between sighter and sightee; (DT on spreadsheet)
Bearing (degrees)

1. For each UpStreamTransect, associate a SegmentLength and Bearing.
2. Convert units on Bearing from degrees to radians; call it theta (θ).
3. Calculate Northing vector for each UpstreamTransect. This is [SegmentLength $x(\operatorname{Cos} \theta)$]
4. Calculate Easting vector for each Upstream Transect. This is [SegmentLength $x(\operatorname{Sin} \theta)$].
5. Calculate CrowFlyDistance This takes 3 steps
a. Sum all Northing vectors, then square the sum.
b. Sum all Easting vectors, then square the sum.
c. Square root of (result from a + result from b)
6. Calculate the MeanderDistance. This is the sum of all SegmentLengths

REPORT:

Sinuosity $=$ MeanderDistance/CrowFlyDistance

Metric	SourceFile	Operation
Sinuosity	SlopeAndBearing	Divide field-measured meander length of the site by the straight distance between top and bottom (determined with trigonometry).

